Laura O. Moraes
Biography
Laura O. Moraes is a professor at Universidade Federal do Estado do Rio de Janeiro (UNIRIO). She has a master's degree and a Ph.D. in Systems Engineering and Computer Science at COPPE / UFRJ in the artificial intelligence research field. She graduated in Electronic and Computer Engineering from the Universidade Federal do Rio de Janeiro, during which she acted as a software engineer in the UFRJ-CERN collaboration. From 2011 to 2021, she was a co-founding partner of the data science start-up Twist Systems. In 2018, she participated in the Data Science for Social Good program at the University of Chicago, developing a predictive model to identify individuals at high risk of long-term unemployment. In 2019, she was a finalist for the 2nd EPFL Engineering Ph.D. Summit and presented her doctoral research at École polytechnique fédérale de Lausanne (EPFL), Switzerland. She worked as a lecturer for the MBA in Big Data & Analytics at Fundação Getúlio Vargas in 2019 and 2020 and taught Computer Science classes at Colégio Pedro II.
Interests
Computer Science Education
Learning Analytics
Educational Data Mining
Student Performance Prediction
Education
PhD in Systems Engineering and Computer Science, 2021, Universidade Federal do Rio de Janeiro
MEng in Systems Engineering and Computer Science, 2016, Universidade Federal do Rio de Janeiro
BSc in Electronic and Computer Engineering, 2013, Universidade Federal do Rio de Janeiro
Publications
Eduardo Gonçalves, Paulo Malcher, Laura O. Moraes, Davi Viana, and Rodrigo Santos (2024). SECO-RCR: A Tool to Manage Requirements Change in Software Ecosystems. Anais do XXXVIII Simpósio Brasileiro de Engenharia de Software, setembro 30, 2024, Curitiba/PR, Brasil. SBC, Porto Alegre, Brasil, 782-788.
PDF BIB Code Video DOIHenrique S. Rodrigues, Laura O. Moraes, Eduardo da Silveira Santiago, João Pedro Porto Campos, Elmo Sanches Guimarães Júnior, Gabriel Monteiro de Castro Xará Wanderley, Ana Cristina Bicharra Garcia, Carlos Eduardo Ribeiro de Mello, Reinaldo Viana Alvares, Rodrigo Pereira dos Santos (2024). Predicting Student Dropout on the Information Systems Undergraduate Program of UNIRIO Using Decision Trees. Anais do XXXII Workshop sobre Educação em Computação, julho 21, 2024, Brasília/DF, Brasil. SBC, Porto Alegre, Brasil, pp.588-598.
PDF BIB DOIJoão Pedro Freire, Flávia Landim, Laura O. Moraes, Carla Delgado, Carlos Pedreira (2024). Modelo para previsão precoce de abandono de uma disciplina de introdução à programação. Anais do XXXII Workshop sobre Educação em Computação, julho 21, 2024, Brasília/DF, Brasil. SBC, Porto Alegre, Brasil, 635-645.
PDF BIB DOIArthur Sasse, Laura O. Moraes, Carla Delgado, Carlos Pedreira (2024). Analisando a efetividade da formação de clusters na avaliação de exercícios de programação. Anais do IV Simpósio Brasileiro de Educação em Computação, abril 22, 2024, Evento Online, Brasil. SBC, Porto Alegre, Brasil, 325-335.
PDF BIB Code Video DOI
Bruno Hryniewicz, Fernando França, João Paixão, Laura O. Moraes (2024). Biblioteca para exemplificação no ensino de Álgebra Linear. Anais do IV Simpósio Brasileiro de Educação em Computação, abril 22, 2024, Evento Online, Brasil. SBC, Porto Alegre, Brasil, 336-345.
PDF BIB Code Slides Video DOI
Henrique Rodrigues, Eduardo Santiago, Gabriel Wanderley, Laura Moraes, Carlos Eduardo Mello, Reinaldo Alvares, Rodrigo Pereira dos Santos (2024). Artificial Intelligence Algorithms to Predict College Students’ Dropout: A Systematic Mapping Study. Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART, 344-351, 2024 , Rome, Italy.
PDF BIB DOI
Gabriel Xará, Laura O. Moraes, Carla Delgado, Claudio de Farias, João Pedro Freire (2023). Dealing with a large number of students and inequality when teaching programming in higher education. Anais do XXIX Workshop de Informática na Escola (WIE 2023), 07 e 08 de Novembro, 2023, Passo Fundo/RS (Prêmio de melhor artigo da trilha).
PDF BIB Code Slides DOI
Laura O. Moraes, Carlos Eduardo Pedreira, Carla Delgado, João Pedro Freire (2022). Machine Teaching: uma ferramenta didática e de análise de dados para suporte a cursos introdutórios de programação. Anais do II Simpósio Brasileiro de Educação em Computação, pp. 213-223, 24 a 29 de Abril, 2022, Virtual.
PDF BIB Code Video Slides DOILaura O. Moraes, Carlos Eduardo Pedreira, Carla Delgado, João Pedro Freire (2021). Supporting Decisions Using Educational Data Analysis. Anais Estendidos do XXVII Simpósio Brasileiro de Sistemas Multimídia e Web (WebMedia 2021), pp. 99-102, Novembro 2021, Virtual.
PDF BIB Code Video Slides DOIChunpai Wang, Shaghayegh Sahebi, Siqian Zhao, Peter Brusilovsky, Laura O. Moraes (2021). Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization. Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization (UMAP '21), pp. 179-188, June 21–25, 2021, Utrecht, Netherlands. ACM, New York, NY, USA.
PDF BIB Code Video DOILaura O. Moraes, Carlos Eduardo Pedreira (2021). Unsupervised Concept Extraction in an Introduction to Programming Course. PhD Thesis in Systems Engineering and Computer Science - COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro.
PDF BIB Code Video SlidesLaura O. Moraes, Carlos Eduardo Pedreira (2021). Clustering Introductory Computer Science Exercises Using Topic Modeling Methods. IEEE Transactions on Learning Technologies, vol. 14, no. 1, pp. 42-54, Feb. 2021.
PDF BIB Code DOILaura O. Moraes, Carlos Eduardo Pedreira (2020). Designing an Intelligent Tutoring System Across Multiple Classes. 4th Educational Data Mining in Computer Science Education (CSEDM), 2020, Virtual Workshop.
PDF BIB Code VideoLaura O. Moraes, Carlos Eduardo Pedreira (2019). A Decision Tree Approach for the Differential Diagnosis of Chronic Lymphoid Leukemias and Peripheral B Cell Lymphomas. Computer Methods and Programs in Biomedicine, v. 178, pp. 85-90.
BIB Code DOIÍñigo Martínez de Rituerto de Troya, Ruqian Chen, Laura O. Moraes, Pranjal Bajaj, Jordan Kupersmith, Rayid Ghani, Nuno B. Brás, Leid Zejnilovic (2018). Predicting, Explaining, and Understanding Risk of Long Term Unemployment. 32nd Annual Conference on Neural Information Processing Systems (NeurIPS) AI for Social Good Workshop, Canada.
PDF BIBLaura O. Moraes, Carlos Eduardo Pedreira (2016). Classificação de Linfomas Utilizando uma Abordagem Baseada em Árvores De Decisão. Dissertação (Mestrado em Engenharia de Sistemas e Computação) - COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro.
PDF BIB Code SlidesLouis-Martin Losier, Felipe Fink Grael, Etienne Desgagné, Fábio Hochleitner, Laura O. Moraes (2015). Cloud Based Alert System for Aggressive Natural Disasters. 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Argentina.
PDF BIB DOIFelipe Fink Grael, Carmen Maidantchik, Luiz Henrique Ramos de Azevedo Évora, Kaio Karam, Laura O. Moraes, Manuela Cirilli, Marzio Nessi, Kathy Pommès (2011). Glance Information System for Atlas Management. Journal of Physics: Conference Series, v. 331, n. 8, p. 082004.
PDF BIB DOI
Students
current STUDENTS
Ronaldo da Silva Figueiredo (2024--ongoing). Machine Teaching: um ambiente virtual de aprendizagem personalizado. Undergraduate student (PIBIC-Af).
Nicolas da Mota Arruda (2024--ongoing). Infraestrutura flexível para um ambiente virtual de aprendizagem. Undergraduate student.
Miguel Cordeiro de Souza Lima (2024--ongoing).
Gabriel Monteiro De Castro Xara Wanderley (2023--ongoing). Mapas Conceituais Gerados Automaticamente como Ferramenta de Suporte ao Aprendizado. Master student.
Henrique Soares Rodrigues (2023--ongoing). Predição de Evasão nos Cursos de Ciências Exatas da UNIRIO Utilizando Aprendizado de Máquina. Master student.
Matheus Avellar de Barros (2023--ongoing). Comparação sistemática de algoritmos supervisionados de classíficação binária. Master student. Co-advised with Carlos Eduardo Pedreira (PESC/COPPE/UFRJ).
Juliana Barros de Sousa (2023--ongoing). Construção de feedback automatizado para alunos em curso introdutório de programação. Undergraduate Final Course Project (CNPq). Co-advised with Fernanda Duarte (DEL/UFRJ).
Hugo Folloni Guarilha (2022--ongoing). Machine Teaching. Undergraduate student (Reditus e PIBIC). Co-advised with Carla Delgado (IC/UFRJ).
PAST STUDENTS
Renan Costa Alves (2023--2024). Padronização e recuperação de informações sensíveis em um banco de dados. Undergraduate student (PIBIC-Af).
PDFArthur Mendonça Sasse (2023). Explorando o agrupamento de códigos para feedbacks mais eficientes no ensino de programação. Undergraduate Final Course Project (CNPq). Co-advised with Carlos Eduardo Pedreira (PESC/COPPE/UFRJ) and Carla Delgado (IC/UFRJ).
PDFJoão Pedro Matos Freire (2023). Modelos para previsão de desempenho de alunos em curso introdutório de programação. Undergraduate Final Course Project. Co-advised with Flávia Landim (IM/UFRJ) and Carla Delgado (IC/UFRJ).
João Pedro Matos Freire (2023). Previsão de desempenho em cursos de programação. Undergraduate student (PIBIC). Co-advised with Carlos Eduardo Pedreira (PESC/COPPE/UFRJ) and Carla Delgado (IC/UFRJ).
Rodrigo Silva Peres (2023). Grandes Modelos de Linguagem na resolução de questões de vestibular: o caso dos Institutos Militares brasileiros. Master's Thesis. Co-advised with Carlos Eduardo Mello.
PDFAlex Santos de Oliveira and Rafael da Silva Fernandes (2023). Exploring the impact of intermediate languages on machine translation. Undergraduate Final Course Project. Co-advised with João Antonio Recio da Paixão.
PDFGabriel Monteiro de Castro Xara Wanderley (2023). Arquitetura resiliente e escalável para um sistema de execução de código remoto. Undergraduate Final Course Project. Co-advised with Claudio Miceli.
PDFFernando Silva França and Bruno Hryniewicz Santos Cruz (2023). Biblioteca para exemplificação de álgebra linear EasyLinalg. Undergraduate Final Course Project. Co-advised with João Antonio Recio da Paixão.
PDFGabriel Matos Cardoso Leite (2017). Técnica de Redução de Comparações em Classificadores Multiclasse. Undergraduate Final Course Project. Co-advised with Carlos Eduardo Pedreira.
Projects
CURRENT PROJECTS
PAST PROJECTS
Machine Teaching
At this project we aim at creating a personalized learning system in Introduction to Programming classes as a way to uncover students’ difficulties, to understand their knowledge and to provide timely feedback to keep students engaged.
Keywords:
Learning Analytics
Educational Data Mining
Computer Science Education
CSEDM
Predicting long-term unemployment in Portugal
At this project we aim at better identifying individuals at high risk of long-term unemployment (LTU) and supporting more efficient allocation of IEFP’s resources to respond to the needs of unemployed individuals.
Keywords:
Data Science for Social Good
Long-term Unemployment
Regression
Lasso Tree
At this project we propose a decision-tree approach for the differential diagnosis of B-cell chronic lymphoproliferative disorders using flow cytometry data.
Keywords:
Differential diagnosis
Lymphomas
Flow Cytometry
Classification
Decision tree
Talks
Interpretabilidade dos modelos: o que são? Onde vivem? Do que se alimentam? (a partir de 1:00:26)
Portuguese - Nov 25, 2021 - Online (Semana PESC 2021)
Como a análise de dados educacionais pode melhorar a educação?
Portuguese - Jul 16, 2021 - Online (Festival do Conhecimento 2021)
Unsupervised Concept Extraction in an Introduction to Programming Course
Portuguese - Feb 24, 2021 - Online
Roda de Conversa: Os impactos da Inteligência Artificial na Educação
Portuguese - Oct 26, 2020 - Online (Roda de Conversa)
Social Impact of Data
Portuguese - Nov 13, 2019 - Casa Firjan (Diálogos da Inovação)